If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=4.9t^2-20t+10
We move all terms to the left:
0-(4.9t^2-20t+10)=0
We add all the numbers together, and all the variables
-(4.9t^2-20t+10)=0
We get rid of parentheses
-4.9t^2+20t-10=0
a = -4.9; b = 20; c = -10;
Δ = b2-4ac
Δ = 202-4·(-4.9)·(-10)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{51}}{2*-4.9}=\frac{-20-2\sqrt{51}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{51}}{2*-4.9}=\frac{-20+2\sqrt{51}}{-9.8} $
| 22=9x+3 | | 75=224-v | | 5x-2+(4x-4)=1+(3x-3) | | x^2+100^x-4200=0 | | 3n+2n=2 | | 2(13-18)=x | | K2-12k+32=0 | | 2+3/5x=6 | | 2+3/5x=66 | | 4x-1.8=6.2 | | 1.5(m+7)=30 | | 1.5(x-8)=30 | | 2a=200+50 | | 2x-1=-9x+6 | | L+(l+15)=35 | | 0.8/x=1/30 | | 1.3(x-0.7)=0.12(x+10)+5x=-9.75 | | 8+5n=41 | | 5+4x=25=16 | | 5+4x=25=6 | | 4x+(10)=50 | | 5p+13=63 | | -0.4x=120 | | 12x-9x-5=7 | | 6b-14=8 | | Y-7=3x+6 | | 3x^2-11/x^2-3x=3 | | 4+n=-5+(9) | | 7=8t-12t | | 2x+12=3x+32 | | 99=-p | | 2x2+11x+7=0 |